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The polaron and squeezed states 
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Institute of Physics, Slovak Academy of Sciences, CS-842 Bratislava, Czechoslovakia 

Received 17 May 1990, in final form 27 September 1990 

Abstract. The structure of the phonon cloud surrounding the polaron and the ground-state 
energy is investigated. The proposed variational wavefunction consists of a few squeezed 
effective phonon modes. 

1. Introduction 

The problem of the electron-phonon interaction is still of interest owing to the polaron 
and exciton localization (Fischer et af 1989, Wagner and Kongeter 1989). 

An electron in the conduction band interacting with phonons is described by the 
dimensionless Frohlich-like Hamiltonian 

H = dp2 + w(k)b: bk + V(k)(b: exp( -ik - r) + HC) (1) 
k k 

wherepis themomentumoftheelectron, risitscoordinate, bkand b: aretheannihilation 
and creation operators of phonons, w ( k )  is the phonon frequency and the coupling V(k) 
is proportional to fi, (Y being the coupling constant. For simplicity we set the mass m 
of the electron equal to unity and the Planck constant h equal to unity. The discrete 
version of this Hamiltonian describes the Frenkel exciton in a molecular chain. 

It is well known that the electron coordinate can be eliminated owing to the trans- 
lational symmetry of (1) by the Lee-Low-Pines (1953) transformation 

The transformed Hamiltonian 

H ( P )  = U~LPHULLP = - P - 2 kbibk + w(k)b:bk + [V(k)b: + HC] (3) 

describes the cloud of correlated phonons which accompany the polaron with the total 
momentum P. For the problem of an exciton in a molecular chain there is an analogous 
generalized Fulton-Gouterman transformation (Wagner and Kongeter 1989). 

In both cases we obtain an anharmonic vibrational eigenvalue equation which is 
difficult to solve, especially for the coupling strength in the transition region between 
the weak- and strong-coupling regimes. The main advantage of this approach is the 
explicit translational invariance of the approximate solution. 

Gross (1955), Tulub (1961) and Barentzen (1975) have presented an approximate 
method of the diagonalization of the effective Hamiltonian (3). Although these theories 
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yield a set of equations describing the polaron over the whole coupling range they have 
two disadvantages. 

(i) It turns out to be impossible to solve this set of integral equations exactly. 
(ii) The correlations of the phonons are taken into account only partially. 
Our aim is to pick up a few relevant phonon modes which are responsible for the 

main features of the phonon cloud. For simplicity we shall deal only with the ground 
state; thus P = 0. The eigenstates of the relevant Hamiltonian are to be found in the 
form of displaced and squeezed phonon states. Such approach was fruitfully used in 
tunnelling systems (Chen et a1 1989, Jayannavar 1989). 

2. The relevant phonon modes 

Let us express the plane-wave phonon modes bk in terms of the spherical wave phonon 
modes B,. In general the index ,u = ( n ,  1, m) represents the three quantum numbers, 
i.e. the main quantum number n,  the orbital momentum 1 and the projection of the 
orbital momentum m: 

The functions u,(k) form a complete orthonormal set: 

x (k)up(k')  = 8 k . k '  c. U; (k)u Y ( k )  = d p ,  Y (5) 
P k 

to ensure the standard boson commutation relations for B,. The Hamiltonian ( 3 )  for 
P = 0 expressed in terms of B: and B,  becomes 

H = QP,,B: B ,  + (T,B:  + HC) + d Q,.v * Q , . , B ~ B ~ B , B , .  (6) 

Q ( k )  = o ( k )  + ik2 (7) 

Q,,, = c. u ; ( k ) Q ( k ) u , ( k )  = {,uIQ(k)lv) @a) 

T, = {PIV} e,,, = {,uIklv). (8b) 

,% V PC., P U P 0  

The new quantities are defined as follows: 

(where Q ( k )  is the renormalized phonon frequency) 

k 

In the last two expressions we have used the auxiliary bra and ket vectors { 1,l } to 
abbreviate the notation for the sums over k .  These should be distinguished from the bra 
and ket vectors ( 1 and I ) which are reserved for denoting physical states. 

The Hamiltonian (6) has the same eigenvalues as the starting Hamiltonian (3). Our 
basic idea is based on the variational approach with the specific form of the trial 
wavefunction 10). Let us define the irrelevant phonon modes by the condition 

For the relevant modes, B, 1 
B ,  I@)  = 0 for ,u irrelevant. (9) 

(@/HI@) = (olHre1 I@).  (10) 

(11) 

f 0. 
Then the expectation value of (6) in the state (9) is 

The relevant part Hrel of the Hamiltonian includes only the relevant modes: 
re1 re1 re1 

Hrel = Q,,, B; B ,  + 2 ( V p B ;  + HC) + d 2 Q,,, * Q,,,B:B~B,B,. 
P .  P. , U P 0  

The symbol Zrel means the reduced summation over the relevant modes only. The 
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'relevant Hamiltonian' has, in contrast with (6), only a limited number of degrees of 
freedom, but its ground-state energy gives the upper bound to the exact ground-state 
energy. 

In what follows we shall deal only with the relevant modes with the main quantum 
number n = 0. The corresponding functions u,(k) can be factorized in the form 

u / m w  = A / m ( k / k ) f / ( k )  k = lkl. (12) 

The radial functionsh(k) are normalized to unity: 

Owing to the Wigner-Eckart theorem we find that the matrix elements ( s a )  and (8b)  
depend only on the radial functions h ( k )  by means of the reduced matrix elements 
defined by the relations 

The coupling function V ( k )  is assumed to be spherically symmetric. 
The ground-state energy of the relevant Hamiltonian depends only on the radial 

functionsfi(k) through the parameters (14). It is shown in the appendix how to find the 
optimal functionsh(k). 

As an example we present the simple case of only one spherically symmetric phonon 
mode 

u o ( 4  = f o (k )  {fo I f01  = 1. (15) 

The one-mode relevant Hamiltonian 
H ( ' )  = QoBTBo + (ViBo -t HC) 

represents the displaced oscillator. The ground-state energy is simply 
E ( ' )  = - ITo 1 * / Q 2 , .  

fo(k) - V ( k ) / Q ( k ) .  

(17) 

This energy is minimized by the function 

The corresponding energy 

is exactly the intermediate-coupling result of the Lee-Low-Pines theory. 

3. Four relevant phonon modes 

The non-trivial results are obtained including one s mode (orbital momentum 1 = 0) 

= fo(k) if0 I f 0 1  = 1 (19a) 
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and threep-modes (1 = 1, i = 1,2 ,3)  

U, (4 = (k,/k)f1 ( W 3  if1 If11 = 1. (19b) 

k, represents the ith component of the vector k ;  k = Ik/ .  
After straightforward calculations we obtain the four-mode relevant Hamiltonian 

3 

= QoBo+Bo + Q l  BTB,  +VOB; +v ,*Bo  
I =  1 

3 

+ at 2 (B,?Bi + B,+*Bf + 2B:B,B,+B,). (20) 
r = l  

The coefficients are defined by (14) and by 

t = KO1 K10/3. (21) 

The two unknown functions f , (k )  and fl(k) are the variational parameters. The 
ground-state energy of the relevant Hamiltonian (20) is only a function of the parameters 
Q,, Q,, To, 7'"; and t .  Using this fact the functions fo (k)  and fl(k) can be exactly 
parametrized (see appendix) by 

fo(k> - - V ( k ) / { Q ( k )  - A 0  - s , k * / [ Q ( k )  - A l l 1  P a )  

f l (k)  - fo (k ) / [Q(k )  -A,]. (22b) 

and 

The total set of the variational parameters is reduced to three real constants A,, A l  

In what follows we shall calculate the ground-state energy of the relevant Ham- 
and ss. 

iltonian H(4) (20). We follow Barentzen (1975) and apply the displacement operator 

D = exp(zB$ - z*Bo)  

on (20): 
4 

= D+H(4)D = 2 H i  
i = O  
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The most simple approximate solution of (24) is the squeezed-phonon vacuum 
(Loudon and Knight 1pS7) 

3 

1 0 )  = exp(4q i = l  ( B T ~  - B : ) )  1 0 )  (25) 

which diagonalizesH2 ( 2 4 ~ ) .  (The unsqueezedvacuum state IO) is defined by the standard 
relations B, IO) = 0 for all p . )  The squeezing angle is 

q = i log(1 + 2t/z/2/Q*).  

E(z )  = (O/X16)  = Ho - i Q l [ ( l  + 2t/z12/Q1)1’2 - 1 1 2  

(26) 

(27) 

The expectation value of the energy 

has to be minimized with respect to z .  The result (27) reproduces both the intermediate- 
and the strong-coupling theory of the polaron. For a 4 1 we obtain evidently the 
intermediate result. For a + 1 we obtain z = -Sro/(Qo - i t )  and the energy functional 

E(4) = -IV0 /2 / (Qo - $t) (28) 
has the minimum value 

The leading term which is proportional to a is the same as in the strong-coupling 
theory. 

Let us now proceed to the more precise handling of the Hamiltonian (20). Owing to 
small number of the phonon modes the Hamiltonian (20) can be diagonalized to any 
order of accuracy. One of the possibilities is to look for the solution in the form of the 
more general squeezed state 

3 

with two squeezing angles asvariational parameters. The expectation value of the energy 
is 
E(4) = Q O [ Z ~ ~  + Y ~ z *  + V,*Z + $ Q ~ [ c o s ~ ( ~ Q I )  - 11 

+ $ t l ~ / ~ [ e x p ( 2 q )  - 11 + t{Qo + $t[cosh(2q) - 11) 
X [cosh(2v) - 11 + it  sinh(2q) sinh(2y). (31) 

The extreme values of z and can be found analytically; the remaining extrem- 
alization with respect to the angle q and the parameters A o ,  A ,  and s1 can be done 
numerically. 

4. Numerical example and discussion 

Let us deal with the acoustic polaron in three dimensions. The phonon dispersion law is 

o(k)  = k (32) 

V(k) = ( 4 7 ~ a / V ) ” ~ k ” ~ .  (33) 

and the coupling 

a is the dimensionless coupling constant and Vis the volume of the sample. We express 
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Table 1. Values of the ground-state energy for the different methods (see text). 

a &e)" Em, E,,,,,, 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

- 2.4030 
-4.X406 
-7.4849 
-9.8079 

-13.162 
-16.531 
- 20.530 
-25.137 
-30.197 
-35.608 

- 2.4065 
-4.8972 
- 7.4773 

-10.1521 
- 12.926 
-15.805 
-18.791 
-21.889 
-25.100 
- 29.716 

- 2.3661 
-4.7322 
-7.0984 
-9.4645 
- 11.830 
-14.831 
-16.563 
-18.929 
-21.295 
- 23.661 

the energies in units of ms2, the lengths in units of films and the circular frequencies in 
units of ms2/h with s being the velocity of sound (Peeters and Devreese 1985). The sum 
over the phonon wavevectors k is replaced by the integral according to 

In table 1 we present the ground-state energies Ere, for different values of the coupling 
constant a compared with the results obtained by the Feynman method and with the 
intermediate-coupling theory. The cut-off wavevector is ko = 10. 

As a reference we take the Feynman approximation (Peeters and Devreese 1985). 
Our results improve the intermediate-coupling theory considerably. For a < 0.3 they 
are even better than the reference results (the reference value of ,EFeyn for (Y = 0.2 is 
probably erroneous). For a S== 1 we again come very close to the strong-coupling limit. 
In the region 0.3 < a < 1 which corresponds to the transition between the intermediate- 
and strong-coupling regime our results fail to improve the reference results. All this 
indicates that the structure of the phonon cloud in the transition region is very complex. 
To penetrate into this region of coupling constant with an appropriate approximation 
we have two possibilities. 

(i) The number of the relevant phonon modes can be increased, e.g. including 
phonon modes with higher orbital momentum. In the appendix it is shown how to 
parametrize the radial function for the d wave in the form of the continued fraction. In 
the relevant Hamiltonian, new terms arise which describe the interaction between the 
p and d waves. 

(ii) The relevant Hamiltonian can be diagonalized numerically. It is inconvenient to 
use the multimode Fock states as a basis for the direct diagonalization of the Hamiltonian 
(20) because of large numbers of states needed. A more sophisticated method is to 
start from the transformed Hamiltonian (24) with the displacement z = -V/Q0 which 
eliminates the term linear in the operator Bo (24b) and apply the Lanczos method. 
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Appendix 

The expectation value of the energy including only the relevant phonon modes (12) is a 
function of the parameters (14): 
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E = E ( Q / , ~ o ,  K/,('). (All  

ww/ I = 0 (A21 

a /  = aE/aQ/ U ,  = aE/aT, U / , / (  = a E / d K / , , ' .  (A31 

We determine the optimal functions f i (k)  from the equations 

with constraints {fr i f i }  = 0. 

Let us denote the derivatives of the energy (Al) as follows: 

Using the definitions (14) and (A3) we obtain from the extreme condition (A2) the set 
of equations 

k a l . / - ,  

l = O , l ,  . . * , L  

the solution of (A4) can be found in the form 

I f o >  = -Fo(k)(au/ao) I VI 

If/} = - 4 ( k ) ( Q / , /  - 1 / a d k  If/- 1 1 

F / ( k )  = l /[Q(k) - A/ - k2s/+1F/+1(k)1. 

S / + l  = l % + l  I2/a/a/+1. 

+ a / [ Q ( k )  - hllfJ + ka l , /+ ,  If/+l} = - ~ o . ~ a u i W .  

A/ are the Lagrange multipliers. For the finite set of functionfi(k) with 

and 

l = 1 , 2  ) . . . )  L. 

The quantities F,(k) obey the recurrence equations 

The parameter sI is 

For the maximal value of 1 = L we define 

F , ( k )  = l/[Q(k) - L L I .  

The solution of the recurrence equation is a continued fraction 
1 

F / ( k ) =  [Q( k )  - A, - k 2 s I  + /{ Q ( k )  - il I + - k2sl  + /. . . [ Q ( k )  - A - I - k2s  /( Q( k )  - A L)]>l 

For L = 1 we can easily find the formulae (22a) and (22b). 
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